

D5. 3. Continuous integration
and testing plan

Personal Decision Support System

For Heart Failure Management

Co-funded by the Horizon 2020
Framework Programme of the European Union

D5.3 Continuous Integr ation and testing plan

 Page 2 of 77

Project Acronym: HEARTMAN

Project Title:
Personal Decision Sup port System For Heart Failure
Management

Project Number: 689660

Instrument: RIA

Call : H2020 -PHC-2015 -single -stage

Topic: PHC-28 -2015

D5.3 Continuous Integration and testing plan

Work Package: WP5

Due Date: 31 / 12 /16

Submission Date: 31/12/16

Start Date of Project: 01/01/16

Duration of Project: 36 Months

Organisation Responsible of Deliverable: ATOS SPAIN S. A.

Version: 1.0

Status: Final

Author name(s):
Carlos Cavero , Juan Mario
Rodr íguez

ATOS

Reviewer(s): Jure Lampe SenLab

 Aki Tiihonen MEGA

Nature:

 R ï Report P ï Prototype

 D ï Demonstrator O ï Other

Dissemination level:

 PU ï Public

 CO ï Confidential, only for members of the
consortium (including the Commission)

 RE ï Restricted to a group specified by the

consortium (incl uding the Commission Services)

This work is licensed under the Creative Commons Attribution Non

Commercial Share Alike 3.0 License . To view a copy of this license, visit

https://creativecommons.org/licenses/by -nc-sa/3.0/ or send a letter to Creative

Comm ons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

This project has received funding from the European Unionôs Horizon 2020
research and innovation programme under grant agreement no 689660.

D5.3 Continuous Integr ation and testing plan

 Page 3 of 77

Revision history

Version Date Modified by Comments

0.1 22/11 /2016 J. Mario
Rodríguez, C.

Cavero Barca

First draft with TOC

0.2 28/11 /2016 J. Mario

Rodríguez, C.
Cavero Barca

Executive summary and

Introduction

0.3 30/11 /2016 C. Cavero Barca Section 2, a bit of

history

0.4 02/12 /2016 J. Mario Rodríguez Section 3

0.5 05/12 /2016 J. Mario Rodríguez Sections 4 and 5 about
tool description

0.6 13/12 /2016 C. Cavero Barca Section 6, 7 and 8 about

the different workflows

0.7 16/12 /2016 C. Cavero Barca Conclusions and next

steps

0.8 20/12 /2016 J. Mario Rodríguez General document
reviewing

0.9 22/12 /2016 J. Lampe and A.
Tiihonen

Comment received by
the reviewers

1.0 26/12 /2016 C. Cavero Barca Final version

D5.3 Continuous Integr ation and testing plan

 Page 4 of 77

Executive Summary

This document shows the tools and methodologies to be applied during the
project lifetime in order to provide an efficient Continuous Integration and

testing software engineering approach (CI), trying to set the steps for the
continuous delivery or deployment (CD). This deliverable is mainly focused
on the technical people in the project although part of the methodologies

can be shared also with non - technical experts.

The research done to select the appropriated tools has been disregarded

from the following document. The more wide spread and well - known CI/CD
are used. The descr iption and configuration of these tools are given in order
to replicate the environment. Nevertheless, the most remarkable results of

the task are the workflows and guidelines given to the developers. From
pasts experiences, the implantation of CI/CD tools lacking from a thorough

branching workflow in the source code management system guides to the
misuse or even withdrawal of them, and we want to avoid this in the
HeartMan project.

Deliverable 5. 3 aims not only to describe the tools integrated to be used,
but also to share a set of good practices to foster the cultural change

needed to spread this collaboration techniques throughout the group .

Together with this environment to facilitate an efficient development in
HeartMan, a collaborative wiki will be ma intained in order to share the

knowledge online.

D5.3 Continuous Integr ation and testing plan

 Page 5 of 77

Table of c ontents

1 Introduction 10

2 A bit of history 11

3 Agile methodologies and how to apply them to the project 16

3.1 Scrum 16

3.1 Kanban 18

3.2 Test Driven Development 19

3.3 eXtreme Programming (XP) 19

3. 4 Pomodoro technique 19

3.5 Agile in HeartMan project: Scrum + Kanban + XP + describing the
acceptance tests (TDD) 20

3.5.1 Defi nition of 'Done' 21

4 Continuous Integration tools 22

4.1 Source Code Management 22

4.1.1 GitLab 22

4.2 Project Management and Agile 23

4.2.1 Redmine 23

4.2.2 Taiga 25

4.2.3 Kanbanflow 26

4.3 Quality Assurance 27

4.3.1 SonarQube 27

4.4 Automation server 29

4.4.1 Jenkins 29

4.5 Artefact Repository 30

4.5.1 Nexus 30

4.6 Automated Testing 33

4.6.1 Unit Testing 33

4.6.2 UI testing 34

4.6.3 Coverage 34

5 Continuous deployment tools 37

5.1 IaaS and Linux Containers (LXC) 37

5.1.1 OpenStack 37

5.1.2 Docker 37

5.2 Virtualization tools (development environment) 38

5.2.1 Vagrant 38

D5.3 Continuous Integr ation and testing plan

 Page 6 of 77

5.2.2 VirtualBox 38

5.3 Configuration and management tools 38

5.3.1 Puppet 38

5.3.2 Hiera 38

5.3.3 R10K 39

6 Git branching me thodology 40

6.1 Git fundamentals 40

6.2 GitFlow workflow 40

6.3 Features and repository branches 42

6.4 Always integrate closed features into develop branch using Merge

Requests 44

6.5 Releas e from the develop branch into master 45

6.6 Tag the release 46

6.7 Bugs (hotfix) and branches to solve them 47

6.8 Git commit 47

6.9 Merge Requests and Code Review 48

6.9.1 Merge Requests 48

6.9.2 Code Review 50

7 Continuous Integration workflow 52

7.1 In frastructure 52

7.2 CI workflow step by step 54

7.3 Quality Assurance and metrics 62

7.3.1 Useful metrics to analyse your code 62

7.4 Versioning 63

8 Continuous deployment workflow 65

8.1 Continuous Delivery 65

9 Contribution Guidelines 67

9.1 Where to sta rt 67

9.2 Code of Conduct 67

9.3 Contributing to the repository 67

9.4 License 68

9.5 Code Conventions 68

9.5.1 Plugins 68

9.5.2 How to remove indentation in source code 71

9.5.3 Maven configuration 71

D5.3 Continuous Integr ation and testing plan

 Page 7 of 77

10 Conclusions and next steps 72

11 Annex 1 ï Git Extended Functionality 73

11.1 Updating your local repository 73

11. 2 Remote synchronization with the repository when there are

wastes in our local 73

11.3 Exceptions and indications about git pull, git rebase and fast -
forward merge 73

11.4 Development of a closed feature locally with administrator

permissions 74

12 Reference 76

13 Contact Data 77

Table of figures

Figure 1: Continuous delivery and Continuous deployment 12

Figure 2: Continuous Integration, Delivery and Deployment 13

Figure 3: Continuous Delivery onion 14

Figure 4: Continuous Deploy ment barriers 15

Figure 5: Scrum methodology full process 17

Figure 6: Scrum requirements management 21

Figure 7: Continuous Integration tools 22

Figure 8: Redmine plugins 23

Figure 9: Scrum R edmine plugin ï Product Backlog 24

Figure 10: Scrum Redmine plugin ï Sprint Backlog 24

Figure 11: Redmine Jenkins plugin ï List of jobs 25

Figure 12: Taiga Sprint board 25

Figure 13: Taiga Kanban board 26

Figure 14: GitLab webhook to Taiga 26

Figure 15: KanbanFlow interface example 27

Figure 16: SonarQube custom report 28

Figure 17: GitLab plugin publish build status 29

Figure 18: GitLab webhook to Jenkins 30

Figure 19: SonarQube Jenkins configuration 30

Figure 20: Nexus dashboard 31

Figure 21: Continuous D eployment tools 37

Figure 22: GitFlow workflow 41

Figure 23: Create new branch in GitFlow workflow 42

Figure 24: Creating a new branch from issue in GitLab 43

Figure 25: GitLab protected branches 44

Figure 26: Merge Request process 44

Figure 27: GitLab Only allow Merge Requests if the build succeeds 45

D5.3 Continuous Integr ation and testing plan

 Page 8 of 77

Figure 28: GitLa b build status from Jenkins 45

Figure 29: GitLab build status from Jenkins 46

Figure 30: GitLab tagging 47

Figure 31: Gitflow workflow bugfix management 47

Figure 32: Continuous Integration architecture 53

Figure 33: GitLab issues propagation to Taiga 54

Figure 34: Taiga issues and Agile board 55

Figure 35: GitLab trig gers the Jenkins job on Merge Requests 55

Figure 36: Jenkins builds, run the unit tests and QA analysis 56

Figure 37: Jenkins au tomatic build 56

Figure 38: Jenkins Build status sends back to GitLab 57

Figure 39: Merge Request pending from Jenkins CI 57

Figure 40: Jenkins job failed and messages in the Merge Requests 57

Figure 41: Thumbs up/down in the Code Review 58

Figure 42: GitLab allows merging when the build succeeds 58

Figure 44: SonarQube main metrics 59

Figure 45: Jenkins coverage report 59

Figure 46: GitLab accept Merge Request 59

Figure 47: Continuous deployme nt testing architecture 60

Figure 48: Deployment to Nexus 61

Figure 49: Continuous Deployment infrastructure 66

Table of tables

Table 1: Abbreviations and acronyms 9

Table 2: Scrum vs Kanban 19

D5.3 Continuous Integr ation and testing plan

 Page 9 of 77

Abb reviations and acronyms

API Application Programming Interface

AR Assigned R eviewers

CA Consortium Agreement

CI Continuous Integration

CD Continuous Delivery

DevOps Development and Operations

DoW Description of Work

IDE Integrated Development Enviro nment

QA Quality Assurance

RE Restricted to the consortium and other defined groups

SCM Source Code Management

TDD Test Driven Development

WI P Work In Progress

WP Work Package

XP eXtreme Programming

Table 1 : Abbreviations an d acronyms

D5.3 Continuous Integr ation and testing plan

 Page 10 of 77

1 Introduction

The present document aims to provide guidelines to easily integrate and

deploy the modules implemented in the project. Agile and Continuous
Integration (CI) and Delivery (CD) tools have been configured for this
purpose. When moving to CI environments, one crucial challenge is to

clearly specify and document the workflows and guidelines in order to ease
and spread its right use from all the developers in the project. It is not

enough to have the tools, a cultural change is also necessary as well, and to
follow strictly the processes described towards CI/CD.

The modules to be included in the Source Code Management tool have been

already described in the living document D5.1 [1], and the requirements
gathered must be translated i nto issues for the technical team.

The deliverable is structured as follows:

A bit of history

ī Section 2 , the first part of the deliverable is focused on the history of
the Continuous Integration and Delivery approach.

Agile methodologies and Tools

ī Section 3, describes the Agile methodologies and how to apply them
during the project.

ī Section 4 and 5, is focused on the CI/CD tools to ease the
integration and deployment phase of all the modules identified to be
implemented.

Workflows and guidelines

ī Section 6, describes the selected source code management

workflow, based on branches in Git, in order to have clean, robust
and testable source in the release branches.

ī Section 7 and 8, states the CI/CD workflows to automate the

processes of compiling, testing and de ploying the artefacts.

ī Section 9, explains the contribution guidelines to be used in all the

HeartMan modules.

D5.3 Continuous Integr ation and testing plan

 Page 11 of 77

2 A bit of history

DevOps is about business agility and continuous delivery, a discipline

created through understanding both dev elopment and op era tions . DevOps

is a software development method that emphasizes communication,

collaboration, integration and automation of the various teams involved in

software delivery (developers, operations, quality assurance (QA) 1,

management, etc.).

This approach encourage s:

ī Speed : w hen deploying, we must assume that something could go

wrong . The 100% trustworthiness in the release plan is impossible to

fulfil . DevOps encourages the fact that t he system should be able to

recover rapidly taken into account reaction t ime .

ī Reliability : reliability covers scalability and availability . Things break

and this is a fact . DevOps focuses on regeneration and duplication.

ī Resilience 2 : ñit is the ability to absorb or avoid damage without

suffering complete failureò.

ī Provisioning 3 : ñconfigures any required systems, provides users

with access to data and technology resources, and refers to all

enterprise - level information -resource management involvedò.

Continuous I ntegration (CI) 4 is a software engineering practice in which
isolated changes are immediately tested and reported through frequent
code integrations . CI provides rapid feedback, so that, if a defect is

introduced into the code base, it can be identified and corrected as soon as
possible.

Continuous Delivery (CD) is a series of practices designed to ensure that
teams keep producing valuable software in short cycles and ensure that the
software can be reliably released at any time. Nevertheless the releases

should be manually deployed by the administrator in order to publish a new
release to production.

1 Search Software Quality, http://searchsoftwarequality.techtarget.com/definition/qualit y-
assurance
2 https://en.wikipedia.org/wiki/Resilience_(engineering_and_construction)
3 https://en.wikipedia.org/wiki/Provisioning
4 Search software quality,
htt p://searchsoftwarequality.techtarget.com/definition/continuous - integration

http://searchsoftwarequality.techtarget.com/definition/quality-assurance
http://searchsoftwarequality.techtarget.com/definition/quality-assurance
http://searchsoftwarequality.techtarget.com/definition/continuous-integration

D5.3 Continuous Integr ation and testing plan

 Page 12 of 77

Figure 1 : Continuous delivery and Continuous deployment

Continuous Deployment is the next logical step of continuous delivery:

once everything is smoothly working, e very change that passes the
automat ed tests is deployed to production automatically . The go al is to get

the new features that the developers are creating, out to the customers and
users as soon as possible.

Figure 2: Continuous Integration, Delivery and Deployment

In order to study in depth the journey to Continuous Deployment in the companies,

CD starts with CI which remains at the core of any inf rastructure automation.

Figure 3 : Continuous Delivery onion

(*) Copyright http://www.slideshare.net/xebialabs/andrew-phillips-buildingyourcontinuousdeliverytoolkit

The CD covers the following five steps:

¶ Build/CI ï Types of builds, access control

D5.3 Continuous Integr ation and testing plan

 Page 13 of 77

¶ Environment Provisioning ï Creating and maintaining target

environments

¶ Deployment - Handle different components in different VMs

¶ Test Management ï Automated testing

¶ Release Management

 shows relations between Continuous Integration, Delivery and Deployment :
Continuous Delivery (CD) starts with Continuous integration (CI) and
Continuous deployment is the next st ep of continuous delivery (CD).

Figure 2 : Continuous Integration, Delivery and Deployment 5

In order to study in depth the journey to Continuous Deployment in the companies,

CD starts with CI which remains at the core of any inf rastructure automation.

5 http://magenic.com/BlogArchive/ContinuousDeliveryAnIntroduction

D5.3 Continuous Integr ation and testing plan

 Page 14 of 77

Figure 3 : Continuous Delivery onion

(*) Copyright http://www.slideshare.net/xebialabs/andrew-phillips-buildingyourcontinuousdeliverytoolkit

The CD covers the following five steps:

¶ Build/CI ï Types of builds, access control

¶ Environment Provisioning ï Creating and maintaining target

environments

¶ Deployment - Handle different components in different VMs

¶ Test Management ï Automated testing

¶ Release Management

However, we cannot overlook Continuous Delivery barriers:

¶ Organization culture: Organizational culture is probably the most

important aspect to consider when adopting sustainable Continuous

Delivery pr inciples. The adoption of DevOps should be carried out from

top to bottom.

¶ Lack of integrated development and operations : Continuous

Delivery and DevOps are work ing towards common objectives by

enhanc ing business value through quick software delivery, with in a

culture that enables collaboration and understanding between cross -

functional team s.

http://www.slideshare.net/xebialabs/andrew-phillips-buildingyourcontinuousdeliverytoolkit

D5.3 Continuous Integr ation and testing plan

 Page 15 of 77

Figure 4 : Continuous Deployment barriers 6

The final aim to apply DevOps practices is to change from project

management to a product concep t in order to ease the integration and
deployment phase. The release can then reach the users and the market
quickly and efficiently thanks to robust releases .

6 http://pages.cloudbees.com/rs/cloudbees/images/Continuous -Delivery - Infographic.pdf

D5.3 Continuous Integr ation and testing plan

 Page 16 of 77

3 Agile methodologies and how to apply them to the

project

Agile is a set of practices against the traditional Waterfall 7 culture. The term
was chosen on February 2001 with the Agile Manifesto [2] where a group of

experts from several groups agreed upon a common ground for Software
Development cycle adaptable to changeable environment in the real world

needs where requirements are not fixed from the beginning of the project
focusing on:

ī Individuals and interactions over processes and tools

ī Working software over comprehensive documentation

ī Customer collaboration over contract negotiation

ī Responding to ch ange over following a plan

3.1 Scrum

Scrum 8 is the widest -used agile methodology. The philosophy of Scrum is
based in the continuous and rapid adaptation to client requirements through

a set of underlying values and principles such as roles, workflow and
art efacts:

Artefacts

ī User stories, requirements written like ñAs a <type of user>, I want
<s ome goal> so that <some reason> ò.

ī Product Backlog, an ordered list of everything that might be needed
in the provided by the Product O wner .

ī Sprint Backlog, a ñto doò prioritized list or user stories.

ī Increment, a coded, tested and usable piece of software (the pilots)
provided at the end of each sprint by the development; the

Increment is the sum of all the Product Backlog items completed and
the value of the increment s of all previous Sprints.

Roles

ī Product Owner, optimize the product value and manage the product
backlog.

ī Development Team, a self -managed group who implement the user
stories generated by the Product Owner.

ī Scrum Master, manage the Scrum process and remo ve
communication barriers.

Workflow

7 https://en.wikipedia.org/w iki/Waterfall_model
8 https://en.wikipedia.org/wiki/Scrum_(software_development)

D5.3 Continuous Integr ation and testing plan

 Page 17 of 77

ī Daily sprints , daily meetings of 5 to 15 minutes maximum with a
clear target for all the development team: work done yesterday, work

to be done today and problems found.

ī Sprint planning, monthly meetings (depends on the sprint duration)

where the identification of the user stories to be implemented in the
next sprint is done.

ī Sprint review, where the product owner should check that the result

complies with the user stories.

ī Sprint retrospective, where the team state benef its and drawbacks

found during the last sprint.

Figure 5 : Scrum methodology full process

Following the Scrum principles mentioned above, Figure 5 breaks down the
process of doing Scrum. The Product Backl og is prepared by the Product
Owner covering the requirements (what is expected from the user view)

written as meaningful user stories. The Development T eam together with
the Product Owner and guided by the Scrum Master configures the

initial Sprint Backlo g in the Initial Sprint Planning , the result is a ñto
doò prioritized list or user stories. Each user story is then broken down into
tasks . Those tasks with more prioritized value are placed on the Sprint

Backlog , which means, to be done on the next sprint . At the end of
each sprint the Increment is calculated. The results are shown to the

Product Owner during the Sprint Review. Finally during the Sprint
Retrospective the Development Team discusses about the last sprint
and configures the next one.

From pa st experience, Scrum is learnt by doing Scrum with the support of
experts and people prone to quickly adapt to new requirements (maybe a

D5.3 Continuous Integr ation and testing plan

 Page 18 of 77

Darwinian adaptation) having effective communication and feedback, which
will allow to improve the procedure.

3.1 Kanban

Kanban [3] is an agile process methodology less restrictive than Scrum
based on a very simple idea; Work In Progress (WIP) should be limited

and something new should be started only when an existing piece of work is
delivered or pulled by a downstream functi on. By focusing the efforts on
working on fewer items at the same time, you will get more done and the

developer will feel less stressed.

Kanban leaves almost everything open. The only constraints are ñVisualize

Your Workflow and Limit Your WIPò [4] .

Time boxed iterations prescribed Timeboxed iterations optional

Team commits to a specific
amount of work for this iteration.

Commitment optional.

Uses Velocity as default metric for
planning and process refine ment

Uses Lead time as default metric
for planning and process

improvement.

Cross - functional teams prescribed. Cross - functional teams optional.
Specialist teams allowed

Items must be broken down so
they can be completed within 1

sprint.

No particular item size is
prescribed.

Burndown chart prescribed No particular type of diagram is
prescribed

WIP limited indirectly (per sprint) WIP limited directly (per workflow
state)

Estimation prescribed Estimation optional

Cannot add items to ongoing
iteration

Can add new items whenever
capacity is available

A sprint backlog is owned by one
specific team

A kanban board may be shared by
multiple teams or individuals

Prescribes 3 roles Doesnôt prescribe any roles

A Scrum board is reset between
each sprint

A kanban board is persistent

Prescribes a prioritized p roduct Prioritization is optional

D5.3 Continuous Integr ation and testing plan

 Page 19 of 77

backlog

Table 2 : Scrum vs Kanban

Kanban imposes fewer constraints than Scrum, it means, less parameters to
think about.

3.2 Test Driven Development

ñTest- driven development (TDD) is a software develop ment process that

relies on the repetition of a very short development cycle: requirements are
turned into very specific test cases, then the software is improved to pass

the new tests, only. This is opposed to software development that allows
software to be added that is not proven to meet requirementsò 9.

The idea behind TDD is again to change the culture of the developers.

Instead of starting by developing the product and later on building the tests
to prove that it is working as expected, the implemente r should specify the

tests that the product must pass. In the HeartMan project, the
recommendation is to describe the acceptance tests at the same time than
the user story, although it is not required to fully apply TDD.

3.3 eXtreme Programming (XP)

ñExtreme programming (XP) is a software development methodology which
is intended to improve software quality and responsiveness to changing

requirementsò10 . XP attempts to reduce the cost of changes in requirements
by having multiple short development cycles, rather than a long one.

Extreme Programming emphasizes teamwork: managers, customers, and
developers are all equal partners in a collaborative team.

Tools involved in CI and CD are part of XP to speed up the process of

integrating and testing the product. The fi rst step is to apply Agile
methodologies to extract what the Product Owner wants and later on

through iterative process of self -building and deployment to be able to
release often robust versions of the product.

3.4 Pomodoro technique

The Pomodoro technique 11 is a time management method developed by

Francesco Cirillo in the late 1980s to avoid the multitasking problem. The
Pomodoro technique splits the work in intervals in order to allow focusing on

one task at a time for a certain period (25 minutes) receiving 5 or 15
minutes break . If you manage to do a whole 25 minutes without checking
your e -mail, distracting yourself with your phone or switching to another

task, then you can address 5 minutes to other enjoyable tasks. After four
successful pomodoros accompli shed it is possible to have a break during 15

minutes . The ground behind this technique is that human brain cannot stay

9 https://en.wikipedia.org/wiki/Test -driven_development
10 Extreme programming definition, https://en.wikipedia .org/wiki/Extreme_programming
11 Pomodoro technique, https://en.wikipedia.org/wiki/Pomodoro_Technique

https://en.wikipedia.org/wiki/Extreme_programming

D5.3 Continuous Integr ation and testing plan

 Page 20 of 77

focus indefinitely doing some task becoming then waste time. This method
provides the possibility to concentrate during 25 minutes in on ly and only

one task .

3.5 Agile in HeartMan project: Scrum + Kanban + XP +

describing the acceptance tests (TDD)

HeartMan is not committed to only one Agile methodology. Furthermore,
given the special characteristics of the European projects it is encouraged t o

adopt a combination of features from each method and to apply them
following the test and error technique. Based in Scrum roles, art efacts,
events, and rules, it is possible to combine Scrum with eXtreme

Programming (XP) or Kanban in order to produce bet ter results, adapted to
HeartMan circumstances.

The requirements are gathered from the Product Owner (in this case the
WP2 together with the pilots). Then, this list will be translated into useful
user stories and tasks. The user stories will be uploaded t o the SCM as

issues for the developers. The issues will be propagated into the Kanban
and Scrum boards to be able to follow the work done. Each user story

should include the acceptance test to be passed and to be implemented by
the developers. The acceptan ce tests will be strictly checked by the Product
Owners.

Instead of Daily scrums, the proposal is to have Weekly scrums. User
stories will be organized into sprints taken as the baseline the Product

Backlog. A Kanban board will let everybody follow the sta tus. Once one
feature is finished the use of the CI server (XP) will facilitate the integration

and deployment phase.

Notice that, t he requirements may c hange in following iterations that should
be incorporated in the Product Backlog to be included as Spri nts in Scrum,

according to the agile method ology selected 12 . In HeartMan, the project
stakeholders, product owner or pilots have the right to define new

requirements, change existing requirements, and even reprioritize
requirements. It is crucial to work to gether to ensure everyone is
represented fairly 13 .

12 http://www.scaledagileframework.com/iterations/
13 http://agilemodeling.com/essays/prioritizedRequirements.htm#SimpleStrategy

http://www.scaledagileframework.com/iterations/
http://agilemodeling.com/essays/prioritizedRequirements.htm#SimpleStrategy

D5.3 Continuous Integr ation and testing plan

 Page 21 of 77

Figure 6 : Scrum requirements management

3.5.1 Definition of 'Done'

One of the key elements using the Scrum methodology is to clearly specify
when some feature or user story is considere d finished and this is called

ñthe definition of ódoneôò. Every member in the project should clearly know
without doubts when the user story he/she is in charge, must be considered

completed. Considering XP (eXtreme Programming) patterns which promote
Cont inuous Integration (CI), every user story must fulfil the following
conditions to be considered done, before integrating the modifications into

the release :

1. All the unit tests successfully passed .

2. Quality Assurance (QA) of the source code (commented) and

validated using the agreed metrics (further details in section 7.3).

3. The available art efact in the Artefact Repository ready for the

integration tests (as a snapshot version).

4. Test c overage thres hold successfully passed (see sec tion 4.6.3).

5. The Merge Request done, the Code Review positively passed and

the acceptation of the Administrator of the source code.

6. The feature merged in develop branch in the Source Code

Management (SCM) following the Git bran ching model (section 6).

7. Feature branch removed from the local and remote repository .

Take into consideration that all the above mentioned conditions can trigger
a red flag to the administrator, so the source code should be mo dified to

comply with the workflow.

With this approach at any given moment, it should be possible to merge
develop branch into master branch to release a new version of the product.

D5.3 Continuous Integr ation and testing plan

 Page 22 of 77

4 Continuous Integration tools

In the scope of European projects, the techn ical team (or Development

Team in Scrum wording) needs a toolset in order to allow easily
communicating to each other and a CI infrastructure to facilitate the
integration and delivery task. In the HeartMan project we provide those

tools, but the most impo rtant issue is to have a clear workflow and
guidelines to be able to work together. Not all team members are obligated

to use the same Integrated Development Environment (IDE) , but all the
team must share the same guidelines, metrics and branching workflow and
deliver the artefacts to the same repository. Figure 7 shows the list of tools

installed and prepared to use for the HeartMan project which will be briefly
described in the following sections.

Figure 7 : Continuous Integration tools

There are a lot of similar open source tools available. The election in
HeartMan has been done between the most popular and widely -used ones

taking into account the ease of integration between them.

The main objective is t o build a useful and agile workflow to interact with,
easing the modules integration and organizational activities.

4.1 Source Code Management

4.1.1 GitLab

URL: https://gitlab.atosresearch.eu/ari/HeartMan

Web: https://gitlab.com

https://gitlab.atosresearch.eu/ari/HeartMan
https://gitlab.com/

D5.3 Continuous Integr ation and testing plan

 Page 23 of 77

GitLab 14 is a web -based Git 15 repository manager with wiki and issue
tracking features, using an open s ource license. GitLab also includes code

reviews, issue tracking, wikis and much more. GitLab comes with GitLab CI,
an easy to use CI/CD . GitLab has integratio ns for tools such as Slack,

HipChat, LDAP, JIRA, Jenkins, many types of hooks and a complete API.

4.2 Project Management and Agile

4.2.1 Redmine

URL: https://agile.atosresearch.eu:8443/

Web: http://www.redmine.org

 ñRedmine16 is a flexible project management w eb application. Written using

the Ruby on Rails framework, it is cross -platform and cross -database.
Redmine is open source and released under the terms of the GNU General

Public License v2 (GPL)ò.

Redmine provides a lot of functionalities such as multiple project support,
issue tracking, wiki, SCM integration, forums, news, feeds and so on. It also
possible to install plugins to integrate with other tools like Jenkins and for

Agile management. Redmine provides a list of plugins to integrate with
other tools . In our case we install and configure the following plugins:

Redmine GitHub Hook plugin 17 , Jenkins plugin 18 and Scrum plugin 19 .

Figure 8 : Redmine plugins

14 https://about.gitlab.com/
15 https://en.wikipedia.org/wiki/Git
16 http://www.redmine.org/
17 http://www.redmine.org/plug ins/redmine_github_hook
18 http://jbox -web.github.io/redmine_jenkins/
19 http://www.redmine.org/plugins/scrum -plugin

https://agile.atosresearch.eu:8443/
http://www.redmine.org/

D5.3 Continuous Integr ation and testing plan

 Page 24 of 77

Figure 9 : Scrum Redmine plugin ï Product Backlog

The Scrum Redmine plugin allows managing issues as User Stories and
Tasks in the Product Backlog and the corresponding Sprints. The main
drawback is that when cooperating remotely is cumbersome to move the

virtual post - its. Other drawback s are that reorga nizing the Sprints is also
not as easy as expected and the lacking of a Kanban board (even there are

plugins available) .

Figure 10 : Scrum Redmine plugin ï Sprint Backlog

One really interesting benefit from using Redmine is that as Project
Management tool it is possible to gather all the results coming from other
tools such as Jenkins and Sonar using add -on plugins. Figur e 11 shows the
integration of the list of jobs into Redmine.

D5.3 Continuous Integr ation and testing plan

 Page 25 of 77

Figur e 11 : Redmine Jenkins plugin ï List of jobs

4.2.2 Taiga

URL: https://agile.atosresearch.eu

Web: https://www.taiga.io

ñTaiga20 is an open sourc e project management platform for agile
developers and designers and project managers who want a beautiful tool

that makes work truly enjoyableò.

Taiga is an awesome tool specifically addressed to Agile management. It
provides GitLab integration using webh ooks 21 . When an issue is created in

GitLab, it is automatically propagated to Taiga. There it is possible to
promote the issue into User Stories that will be available in the Kanban

Board or in the Scrum Board to organize the work in Sprints (for further
details see section 7.2).

Figure 12 : Taiga Sprint board

20 https://www.taiga.io/
21 https://en.wikipedia.org/wiki/Webhook

https://agile.atosresearch.eu/
https://www.taiga.io/

D5.3 Continuous Integr ation and testing plan

 Page 26 of 77

Figure 13 : Taiga Kanban board

The GitLab issues are propagated to Taiga via webhooks 22 . Another

interesting feature in T aiga is the possibility to change the status of the
issues and the User Stories via Git commits 23 .

Figure 14 : GitLab webhook to Taiga

4.2.3 Kanbanflow

URL: https://kanbanflow.com

Kanbanflow ¡Error! Marcador no definido. is an online project management tool that
helps you visualize and collaborate with team members. KanbanFlow is

made up of óboardsô for each project or work stream. The name, Kanban ,
refers to a method for managing the tasks, a visual process -management

system that tells what to produce, when to produce it, and how much to
produce.

Kanbanflow also incorporates the Pomodoro technique 24 ; an in -built

Pomodoro timer that keeps you focused on the task selected (see section
3.4). If you manage to do a whole 25 minutes without distracting yourself

with your email, phone or switching to another task, you receive points. We
strongly recommend using it for se lf -organization. The main drawback is
that it is cloud -based so the information will be stored in outside servers.

22 https://tree.taiga.io/support/integrations/gitlab - integration/
23 https://tr ee.taiga.io/support/integrations/changing -elements -status -via -commit -message/
24 Pomodor o technique, https://kanbanflow.com/pomodoro - technique

https://kanbanflow.com/
https://kanbanflow.com/pomodoro-technique

D5.3 Continuous Integr ation and testing plan

 Page 27 of 77

Figure 15 : KanbanFlow interface example

4.3 Quality Assurance

4.3.1 SonarQube

Web: http://www.sonarqube.org/

URL: https://ciserver.atosresearch.eu/sonar

SonarQube 25 is an open source platform to manage code quality. Rules,

alerts, thresholds, exclusions or set tings can be configured online. By
leveraging its database, SonarQube not only allows to combine metrics

altogether but also to mix them with historical measures. As such, it covers
the 7 axes of code quality:

ī Architecture and design

ī Duplications

ī Unit test s

ī Complexity

ī Potential bugs

ī Coding rules

ī Comments

SonarQube is connected to Jenkins (see next section) and the following

plugins have to be installed in order to comply with the restrictions of the
project (Java, JavaScript and php).

ī Java Plugin 26

25 http://www.s onarqube.org/
26 http://docs.sonarqube.org/display/PLUG/Java+Plugin

http://www.sonarqube.org/
https://ciserver.atosresearch.eu/sonar
http://www.sonarqube.org/

D5.3 Continuous Integr ation and testing plan

 Page 28 of 77

ī JavaScri pt Plugin 27

ī PHP Plugin 28

ī Android Plugin 29

Another useful plugins such as FindBugs, PMD, Checkstyle or Cobertura

have been installed but this can be also configured using Maven.

Figure 16 : SonarQube custom report

The connection to S onarQube can be done via a standalone application
called Sonnar Scanner 30 including the parameters in the sonar.properties

configuration file or via Maven 31 configuration of the settings.xml. The user
and passwo rd to be included should be requested to the Ad ministrator:

ī sonar.host.url = https://ciserver.atosresearch.eu/sonar

ī sonar.login

ī sonar.password

There is also a list of configuration parameters 32 and also a lot of
examples 33 available in the web. It is strongly recommend raising the sonar

analysis from Je nkins but it can be done locally using a configured Sonar
Scanner, Maven or Eclipse (depending on the project needs).

The metrics used are broken down in section 0.

27 http://docs.sonarqube.org/display/PLUG/JavaScript+Plugin
28 http://docs.sonarqube.org/display/PLUG/PHP+Plugin
29 http://docs.sonarqube.org/display/SONARQUBE45/Android+Plugin
30 http://docs. sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner
31
http://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner+for+Maven
32 http://docs.sonarqube.org/display/SONAR/Analysis+Parameters
33 http://docs.sonarqube.org/display/SONAR/SonarQub e+Project+Examples

D5.3 Continuous Integr ation and testing plan

 Page 29 of 77

4.4 Automation server

4.4.1 Jenkins

URL: https://ciserver.atosresearch.eu/jenkins

Web: https://jenkins -ci.org/

Jenkins 34 provides continuous integration services for software
development. It is a server -based system running in a servlet container

such as Apache Tomcat. It supports a lot of tools by using plugins.

Plugins have been released for Jenkins that extends its use to projects

written in languages other than Java . Builds can generate test reports in
var ious formats supported by plugins .

Some interesting plugins:

ī GitLab plugin

ī Git plugin

ī Pipeline plugin

ī Maven integration plugin

ī Ant plugin

ī SonarQube plugin

ī TestNG plugin

ī Jacoco plugin

ī Cobertura plugin

ī XShell plugin

ī Google Play Android Publisher Plugin

ī Docker plugins (Buildstep, publishé) and much more

In order to integrate GitLab with Jenkins and publish the build status, we
follow step by step this GitLab plugin setup example 35 .

Figure 17 : GitLab plugin publish build status

Taken as the baseline the CI workflow (section 7.2) we will only trigger the
Jenkins webhook on pull requests (not push) to the protected branches

develop and master (configure in GitLab and Jenkins). Tagging the vers ion

34 https://jenkins -ci.org/
35 https://github.com/jenkinsci/gitlab -plugin/wiki/Setup -Example

https://ciserver.atosresearch.eu/jenkins
https://jenkins-ci.org/

D5.3 Continuous Integr ation and testing plan

 Page 30 of 77

will trigger the webhook to upload the release artefacts to Nexus and
automatically generate the changelog.

Figure 18 : GitLab webhook to Jenkins

As we mentioned in the last section, we configured the sonar.properties
inside the Jenkins job as it can be shown in the following figure.

Figure 19 : SonarQube Jenkins configuration

4.5 Artefact Repository

4.5.1 Nexus

URL: https://ciserver.atosresearch.eu/nexus

Web: https://www.sonatype.com

Nexus 36 is a free repository manager with universal support for popular

components 37 . It supports maven artefacts but also Docker registries as the
Docker repository format, Npm and Bower packages 37 .

Snapshot and Release artefacts

36 https://www.sonatype.com/about -sonatype
37 https://www.sonatype.com/products -sonatype

https://ciserver.atosresearch.eu/nexus
https://www.sonatype.com/

D5.3 Continuous Integr ation and testing plan

 Page 31 of 77

The description has been extracted from this refcard 38 and they can be
summarised as follows:

¶ Release Artefacts , specific, point - in - time releases considered to be

solid , stable and for production use. Released binary artefacts must

be verified with respect to authenticity and integrity. The Central

Maven repository stores release artefacts.

¶ Snapshot Artefacts , Snapshots cover work in progress used during

development (sup posedly under version 1.0.0). A Snapshot artefact

has both a version number such as ñ1.3.0ò and a timestamp and can

be followed by ñ-SNAPSHOTò tag.

Figure 20 : Nexus dashboard

Configuration

Nexus is very flexible and supports sev eral configurations 39 :

1. Repository per project/team 40 , which permits creating new

repositories depending on the needs.

2. Partition shared repository 41 , in which there is only one snapshot

and release repository and the access is given by components taken

into ac count the targets (or artefactId, something like

./org/apache/maven/).

For the HeartMan project we wi ll create specific repositories even this can

be modified during the implementation and deployment phase.

38 https://dzone.com/refcardz/getting -started - repository#refc ard -download -social -buttons -
display
39 http://books.sonatype.com/nexus -book/reference/best -sect - intro.html
40 http://books.sonatype.com/nexus -book/reference/best -sect -per.html
41 http://books.sonatype.com/nexus -book/reference/best -sect -shared.html

D5.3 Continuous Integr ation and testing plan

 Page 32 of 77

Other adjustments

1. To disable the access the repo sitory to anonymous users. This is done

by unclicking "Anonymous access" in Administration / Server (on the

left side of the panel).

2. To allow redeploying the artefacts in order to avoid problems of

redeployment in the first stages of development. It is don e by clicking

in the repository and Configuration/Deployment Policy "Allow

Redeploy". Even it is not recommended at the release level, for

testing we decided to keep this functionality this way (it will be

prohibited once the product is released).

Useful T ip : remember that only artefacts including SNAPSHOT (and below

1.0.0) can be uploaded to the snapshot repository. The release repository
accepts renaming the version (following for instance SemVer 42 notation).
Further details are available in StackSchange 43 .

Maven deployment

The final step is to configure the tools to upload artefacts to Nexus. This

section covers the configuration for Maven deployment 44 . It is also possible
to access the Maven artefacts locally 45 .

The configuration for the user and password sh ould be done in the global

settings.xml configuration file in your Maven installation.

IMPORTANT: user/password information must not be uploaded to the SCM

repository.

<servers>

 <server>

 <id>nexus - snapshots</id>

 <username>deployment</usernam e>

 <password>the_pass_for_the_deployment_user</password>

 </server>

</servers>

And in the pom.xml include the following to connect with the repository:

<! -- This should be changed to snapshots in case of SNAPSHOTS, not finished release -- >

 <distr ibutionManagement>

 <repository>

 <id>nexus - releases</id>

 <url>https://ciserver.atosresearch.eu/nexus/content/repositories/releases</url>

 </repository>

 </distributionManagement>

......

 <plugin>

 <groupId>org.sonatype.plugins</groupId >

 <artifactId>nexus - staging - maven- plugin</artifactId>

 <version>1.5.1</version>

 <executions>

42 http://se mver.org/
43 http://stackoverflow.com/questions/18649486/error -when -deploying -an-artifact - in -nexus
44 http://www.baeldung.com/maven -deploy -nexus
45 http://www.baeldung.com/install - local - jar -with -maven/

D5.3 Continuous Integr ation and testing plan

 Page 33 of 77

 <execution>

 <id>default - deploy</id>

 <phase>deploy</phase>

 <goals>

 <goal>deploy</goal>

 </goals>

 </execution>

 </executions>

 <confi guration>

<serverId>nexus</serverId>

<nexusUrl>https://ciserver.atosresearch.eu/nexus/</nexusUrl>

 <skipStaging>true</skipStaging>

 </configuration>

 </plugin>

Finally you need to run maven using:

mvn clean deploy - Dmaven.test.skip=true

mvn clean deploy

There are available example pom files in the webinar project repository 46 . It

is also possible to upload Npm packages to Nexus 47 .

4.6 Automated Testing

The testing process is the cornerstone of building robust source code.

Together with the coverage mech anism allows easily proving that the
features work as expected before integrating everything for the release
phase. The objective of automated testing tools is to simplify , as much as

possible , the testing effort by executing a series of operations and sen d or
display the reports . Automated testing tools are capable of executing tests,

check the coverage, reporting outcomes and comparing results with earlier
test runs. Tests carried out with the se tools can be run repeatedly, before
integrating the source c ode selected for the next release .

There are examples available of the testing part 33 .

4.6.1 Unit Testing

JUnit

ñJUnit is a unit testing framework for the Java programming language. JUnit

has been important in the de velopment of test -driven development, and is
one of a family of unit testing frameworks which are collectively known as

xUnit that originated with SUnitò48 .

TestNG

TestNG 49 is a testing framework for the Java programming language created

by Cédric Beust and inspired by JUnit and NUnit. The design goal of TestNG
is to cover a wider range of test categories: unit, functional, end - to -end,
integration, etc., with more powerful and easy - to -use functionalities.

46 https://gitlab.atosresearch.eu/ari/webinarCI
47 https:// books.sonatype.com/nexus -book/reference/npm -deploying -packages.html
48 https://en.wikipedia.org/wiki/JUnit
49 http://testng.org

D5.3 Continuous Integr ation and testing plan

 Page 34 of 77

Jasmine

Jasmine 50 is a behaviour -driven development fra mework for testing

JavaScript code . It does not depend on any other JavaScript frameworks. It
does not require a DOM. And it has a clean, obvious syntax so that you can
easily write tests .

4.6.2 UI testing

Selenium

Selenium 51 is a portable open source software te sting framework for web
applications . Selenium provides a record/playback tool for authoring tests

without learning a test scripting language (Selenium IDE). It also provides a
test domain -specific language (Selenese) to write tests in a number of

popular programming languages, including Java, C#, Groovy, Perl, PHP,
Python and Ruby. The tests can then be run against most modern web
browsers. Jenkins provides plugins for integrating Selenium test results .

PhantomJS

PhantomJS 52 is an optimal solution for :

ī Headless website testing, r un functional tests with frameworks such

as Jasmine, QUnit, Mocha, Capybara, WebDriver, and many others .

ī Screen capture, p rogrammatically captur e web contents, including

SVG and Canvas .

ī Page automation, access and manipulate webpages with the standard

DOM API, or with usual libraries like jQuery .

ī Network monitoring, loading and export as standard HAR files.

Automate performance analysis using YSlo w and Jenkins.

4.6.3 Coverage

Cobertura

Cobertura 53 is a free Java tool that calculates the percentage of code

accessed by tests. It can be used to identify which parts of your Java
program are lacking test coverage. It is based on jcoverage.

It is possible to e xecute the cobertura report using Maven 54 and to connect
to SonarQube and Jenkins (with plugins). It is only needed to incorporate
the corresponding dependencies 55 .

50 http://jasmine.github.io/1.3/introduction.html .
51 http://www.seleniumhq.org/ .
52 PhantomJS Website, http://phantomjs.org/ .
53 http://cobertura.github.io/cobertura/
54 http://www.mojohaus.org/cobertura -maven -plugin/index.html

https://en.wikipedia.org/wiki/Jenkins_(software)
http://jasmine.github.io/1.3/introduction.html
http://www.seleniumhq.org/
http://phantomjs.org/

D5.3 Continuous Integr ation and testing plan

 Page 35 of 77

JaCoCo

JaCoCo56 is a free code coverage library for Java, which has been created by

the EclEm ma team based on the lessons learned from using and integration
existing libraries for many years.

JaCoCo also provides the functionality to generate the report using Maven 57

and to connect to SonarQube for unit 58 and integration tests 59 and Jenkins 60
(with pl ugins) using Maven. It is only needed to incorporate [the

corresponding dependencies.

LCOV

LCOV61 is a graphical front -end for GCC's coverage testing tool gcov 62 . It

collects gcov data for multiple source files and creates HTML pages
containing the source c ode annotated with coverage information. It also
adds overview pages for easy navigation within the file structure. LCOV

supports statement, function and branch coverage measurement.

LCOV can be integrated with SonarQube and Jenkins and can also be

generat ed with other JavaScript frameworks (see next subsection) or
directly using the command line 63 .

Karma

Karma 64 can generate code coverage using the JavaScript framework
Istanbul 65 . In order to provide the report , three steps are needed :

ī Preprocessor coverage (required)

ī Reporter coverage (required)

ī Reporter options (optional)

Several JavaScript coverage reports (for instance LCOV) can be generated
with Karma 66 using Grunt 67 or Gulp 68 including also frameworks such as

55 http://www.mojoh aus.org/cobertura -maven -plugin/usage.html
56 http://www.eclemma.org/jacoco/
57 http://www.eclemma.org/jacoco/trunk/doc/maven.html
58 http://docs.sonarqube.org/display/PLUG/Usage+of+JaCoCo+with+Java+Plugin
59
http://docs.sonarqube.org/display/PLUG/Code+Coverage +by+Integration+Tests+for+Java+
Project
60 https://wiki.jenkins -ci.org/display/JENKINS/JaCoCo+Plugin
61 http://ltp.sourceforge.net/coverage/lcov.php
62 http://gcc.gnu.org/onlinedocs/gcc/Gcov.html
63 https://github.com/linux - test -project/lcov
64 https://karma - run ner.github.io
65 https://github.com/gotwarlost/istanbul
66 http://g00glen00b.be/continuous - integration - javascript/
67 http://ahexamples.blogspot.com.es/2014/03/example -of - jasmine -karma -sonar -
grunt.html?m=1

D5.3 Continuous Integr ation and testing plan

 Page 36 of 77

Jasmine testing that can be easily configured 69 and integrated with Jenkins
and Sonar.

68 https://blog.akquinet.de/2014/11/25/js - test -coverag e/
69 https://github.com/karma - runner/karma -coverage/blob/master/docs/configuration.md

D5.3 Continuous Integr ation and testing plan

 Page 37 of 77

5 Continuous deployment tools

Continuous delivery is the next logical step to the CI pipeline. Once the

source code is compiled, clean, passed the QA and uploaded to the
repository management, it is time to deploy the ar tefact to the local
development (first), staging (second) and finally to production environment.

Figure 21 shows the list of tools divided into meaningful packages:

Figure 21 : Continuous Deployment tools

5.1 IaaS and Linux Containers (LXC)

Infrastructure as a Service (IaaS) is a form of cloud computing that

provides virtualized computing resources over the Internet 70 . LXC is a user -
space interface for the Linux kernel containment features. Through a
powerful A PI and simple tools, it lets Linux users easily create and manage

system or application containers 71 .

5.1.1 OpenStack

OpenStack 72 is a free and open -source cloud computing software platform.
Users primarily deploy it as an IaaS solution. It consists of a series o f

interrelated projects that control pools of processing, storage, and
networking resources throughout a data center which users manage

through a web -based dashboard, command - line tools, or a RESTful API.

5.1.2 Docker

Docker 73 is an open platform for developers and sysadmins to build, ship,
and run distributed applications. Docker is a portable, lightweight runtime

and packaging tool. Docker Hub is a cloud service for sharing applications

70 http://searchcloudcomputing.techtarget.com/definition/Infrastructure -as-a-Service - IaaS
71 https://linuxcontainers.org/lxc/introduction/
72 https://www.openstack.org/
73 https://www.docker.com/

